martes, 2 de marzo de 2010

TIPOS DE CELULA


EJEMPLO DE CELULAS

El descubridor de la célula fue un científico ingles Robert Hooke que, al observar al microscopio una fina lamina de corcho vio que estaba formado por infinidad de celulillas que recordaban a las de un panal de abejas. Por eso las llamo células. Era el año 1665.Unos años depuse el italiano Malpighi también investigo sobre el mismo tema por lo que junto con Hooke, es considerado también descubridor de la unidad de vida o célula.
Tras muchas definiciones se puede decir de la célula que es la unidad mas pequeña de materia viva capaz de auto reproducirse.
Las células no son todas iguales sino que pueden representar formas globulosas o redondeadas, alargadas, poliédricas o como los leucocitos, estructuras diversas.
La célula esta formada por:
2.Partes de la célula.
• Núcleo: se ocupa del crecimiento y la reproducción celular. Cada núcleo esta delimitado por una membrana (membrana nuclear) formada por dos capas de espesor variable y presenta diminutos poro que comunican el citoplasma con el nucleoplasma. En el interior del núcleo existe un orgánulo que es el nucleolo que interviene en la formación de los ribosomas. El resto del núcleo tiene un aspecto homogéneo y esta formado por cromosomas completamente estriados.
El ADN (ácido desoxirribonucleico) deriva de la agregación de los cromosomas sexuales. El hombre tiene cromosomas agrupados en pares y solo uno es el cromosoma sexual, en la mujer XX y en el hombre XY.
• Citoplasma: Esta especializado en lo que podría llamarse la vida de la relación de la célula. Las estructuras del citoplasma son de dos tipos: las primeras están representadas por orgánulos de distinta forma son componentes del sistema vivo de la célula, las segundas son sustancias insertadas y no vivas. Las dos están circulando por una sustancia particular, hialoplasma, esta contiene sales en solución, aminoácidos, prótidos y glúcidos.
• Mitocondrias: son cápsulas con diámetro de 0.5 micras, una longitud de 7-8 micras, cuyo número varia según el tipo de células. Presenta dos membranas: una externa que consta de tres extractos, y otra interna que forma unas crestas de variable altura.
• Retículo endoplasmático: Es un sistema de canales donde se aprecian una estructuras tubulares que forman una trama o red tridimensional, esta constituido por tubulos intercalados con formaciones mas amplias. Su función es facilitar el rápido desplazamiento de los materiales que provienen del exterior hacia el interior, así como acumular sustancias de reserva. RNA están colocados de distinta manera en cada célula pero lo mas frecuente es que se apoyen sobre la pared de los túbulos proporcionando un aspecto rugoso.
• Aparato de Golgi: formación del citoplasma similar a una red de amplias mallas, extendida desde el núcleo hasta la periferia.
Su estructura esta formada por unos sáculos planos, acumulados unos sobre otros y cada uno provistos en una pared membranosa. Se cree que esta relacionado con la función escretora de la célula.
• Centríolos: Corpúsculos indispensables para la mitosis o división celular, generalmente son dobles, tienen una función organizadora del material fibrilar que da lugar al llamado huso mitótico y desempeñar un papel en la formación de los cilios y flagelos de muchas células.
• Membrana: Delimita el citoplasma y aparece configurado por dos líneas oscuras
Separadas por un inciso constituido por lípidos o grasas. La membrana es el medio que condiciona los intercambios entre la célula y el ambiente que circunda, seleccionando las sustancias que pueden penetrar en el citoplasma.
3.Guía de células.
El Fibroblasto
Es la célula mas común en el tejido conjuntivo, tiene como función esencial construir el entramado estructural donde descansa el resto de los tejidos del organismo.
Este entramado esta constituido por fibras y material amorfo. El fibroblasto es el principal responsable de su formación.
Existen dos tipos de fibroblastos según su ciclo vital:
• el fibroblasto, o forma joven, que tiene muchas prolongaciones, un núcleo grande y gran actividad de síntesis.
• el fibroblasto, o forma madura, con pocas prolongaciones, núcleo pequeño y una capacidad sintética limitada.
Los fibroblastos son alargados y miden de 50 a 100 micras de longitud,30 de ancho y 3 de espesor. Producen los 3 tipos de fibras presentes en el seno del tejido conjuntivo:
-Fibras colágenas.
-Fibras elásticas.
-Fibras reticulares.
Las fibras colágenas son las mas abundantes. Tienen un diámetro de entre 1 y 20 micras y están constituidas por colágeno, que es la proteína que se detecta en mayor proporción en el organismo. Se llaman colágenas, porque si se hierven se transforman en una sustancia gelatinosa que puede utilizarse como cola. Son de color blanco y no transfieren a las estructuras en las que predominan, como, por ejemplo, los tendones.
Las fibras elásticas son mas delgadas que las colágenas, tienen un color amarillento y predominan en la pared de vasos sanguíneos, como la arteria aorta.
Las fibras reticulares, en forma de red, están formadas por una fibra colágeno envuelta por una capa de glúcidos y lípidos. Son elementos principales de tejido que rodea el hígado, los riñones y las glándulas endocrinas.
Cuando se lesiona el tejido conjuntivo, los fibroblastos lo reparan con la formación del colágeno. El resultado es la aparición de un nuevo tejido llamado fibrosis, que es el elemento básico de la estructura de las cicatrices. La intensidad reparadora es variable y de ella depende la apariencia futura de la cicatriz.
En casos extremos, sobre todo en la raza negra, la producción de tejido fibrótico es tan exagerado que la cicatriz sobre sale los limites corporales formando los queloides que son muy difíciles de extirpar puesto que suelen reciclar.
Las neuronas
Es la unidad celular fundamental del sistema nervioso. Esta forma da por un cuerpo celular y unas prolongaciones que parten de él. El cuerpo celular representa el centro nutriente de la célula y divide los elementos contenidos en el mismo, destacan a parte del núcleo, los denominados corpúsculos de Nissl, que son formaciones de partículas encargadas de sintetizar las proteínas.
Existen dos tipos de prolongaciones de la neurona:
-las dentritas
-el axón
Las primeras prolongaciones cortas pero abundantes y ramificadas.
El axón es una prolongación única, cuya longitud de diámetro varia según el tipo de neurona. En la mayoría de los casos, el axón es mas largo que las dentritas de la misma célula y prácticamente no se ramifica.
Las dimensiones y la forma de las neuronas y sus prolongaciones son muy variables. En general, las células nerviosas son grandes y pueden medir hasta 150 micras, aunque se pueden detectar alimentos celulares de 4 a 5 micras.
Los cuerpos de las neuronas, esféricos o uniformes, se localizan fundamentalmente en el sistema nervioso central, es decir, el encéfalo y la medula espinal. Su numero se estima en miles de millones.
Los nervios periféricos, por su parte, están formados principalmente por la prolongaciones axonales del cuerpo neuronal, algunas de la cuales pueden medir hasta 150 cm de longitud.
Las neuronas no se dividen. Su destrucción representa una perdida permanente que alcanza los 100000 diarios y provoca la disminución progresiva de peso del cerebro estimada en unos 100 gramos entre los 30 y los 80 años.
Las funciones fundamentales del sistema nervioso consisten básicamente en recoger estímulos sensoriales, analizarlos y responder de forma adecuada a los mismos. Son un reflejo de los procesos que ocurren en el pequeño laboratorio neuronal.
Las dentritas se encargan de recibir la información del estimulo: calor, frío, luz, etc. Se origina, entonces, un impulso nervioso que transcurre por el axón, hasta llegar alas terminaciones nerviosas donde, mediante la liberación de pequeñas cantidades de unos compuestos químicos llamados neurotransmisores, se transmite la información a otras neuronas o glándulas, y se genera la etapa final que consiste en la respuesta al estimula nervioso.
Los Hematíes
Es un corpúsculo que se encuentra en la sangre. Tiene forma redondeada, carece de núcleo, por eso no puede ser considerado una verdadera célula. Su tamaño es de unas 7 micras de diámetro y 2 micras de espesor.
Es el corpúsculo mas abundante en la sangre, 4.5 millones / milímetro cúbico que tienen las mujeres y 5.5 millones / milímetro cúbico los varones.
Contiene en su interior una proteína básica llamada hemoglobina, que es la que da color rojo a la sangre.
Su función es transportar oxigeno, recoger el oxigeno del aire que llega a los pulmones, cada molécula de hemoglobina transporta 4 molécula de oxigeno.
La forma bicóncava proporciona al hematíe una gran superficie de contacto que facilita el intercambio rápido de oxigeno. El área total de 5 millones de hematíes es 1 milímetro cúbico de sangre es de 640 milímetros cuadrados y que en 6 litros de sangre el área total disponible para la función de captación y transferencia del oxigeno es de 3840 metros cuadrados.
Los hematíes en el microscopio se observan sueltos, sin contacto entre ellos, color rosa mas intenso en la periferia que en el centro. Estos son flexibles y se adaptan perfectamente a los personajes que les marca el caudal circulatorio.
Se forman en la medula ósea, al entrar en la circulación conservan un esbozo de núcleo que pierden a las 24 horas.
Al cabo de 120 días, las relaciones metabólicas en las que intervienen ya no son eficaces.
Los espermatozoides
Los espermatozoides son los constituyentes celulares del semen. El espermatozoide pasa por distintas etapas o formas celulares antes de llegar a su madurez.
Estos precursores se ordenan como si de una pila de monedas se tratara en la pared del túbulo seminífero, de tal manera que la célula mas primitiva o espermatogonia se sitúa en la región mas externa del cilindro y el espermatozoide maduro en contacto con la luz del túbulo.
En la zona intermedia, y en orden según el desarrollo madurativo, se disponen:
-el espermatocito 1.
-el espermatocito 2.
-la espermatide, que es la ultima generación de células previa a la transformación en el espermatozoide.
Cada etapa de cambio celular dura aproximadamente 16 días. Un ciclo completo, o espermatogenesis dura 64 días.
Los espermatozoides maduros son células alargadas que miden de 55 a 65 micras de longitud. En un milímetro cúbico de semen hay unos 60000 y en una eyaculación se emiten de 200 a 600 millones.
Están compuestos por una cabeza, en forma de pera, de 4 a 5 micras de tamaño, que contiene un núcleo y varios encimas proteolíticos, y una cola que, en su proporción terminal, adopta la forma de un flagelo, gracias al cual el espermatozoide puede moverse a una velocidad máxima de 1 a 3 mm. por minuto y llegar al óvulo para fecundarlo.
En el momento de la unión entre el espermatozoide y el óvulo se segregan las enzimas contenidas en la cabeza del primero y con su acción se separan las células de la capa que envuelve al óvulo para facilitar el traspaso a este ultimo del material genético almacenado en el núcleo del espermatozoide.
Durante la maduración y la transformación de las células germinales se producen divisiones que conducen a que el espermatozoide solo contenga la mitad de los cromosomas, o sea 23. en el desarrollo del óvulo femenino sucede una evolución parecida y, al final, su rotación cromosómica es también 23 elementos.
Cuando se produce la fecundación, el espermatozoide se une al óvulo, se restablece los 46 cromosomas, dispuestos en 23 pares, con la particularidad de que un miembro de cada par es de origen materno y el otro paterno.
En el curso de una relación sexual, el liquido seminal queda a las puertas del cuelo uterino para que los espermatozoides inicien su alocada y difícil carrera en busca del óvulo al que fecundar.
La célula muscular
La célula muscular es el constituyente principal del tejido muscular cuya propiedad fundamental es la contractilidad. Contiene en su interior los elementos necesarios para generar una fuerza motriz que produce actividades tan sutiles como la contracción de una arteria, tan ostensibles como el levantamiento de unas pesas o tan armoniosas como el movimiento corporal.
No todas las células musculares son iguales, porque no todo el tejido muscular es del mismo tipo. Todas tienen, no obstante, una estructura filamentosa preparada para la contracción pero sus rasgos varían según su función.
El mas abundante es el músculo esquelético que, en general, se dispone e inserta sobre los huesos y determina con su contracción la amplia gama de movimientos del cuerpo. Sus células se agrupan en haces. Tienen forma cilíndrica y muchos núcleos. Pueden medir hasta 30 centímetros y su diámetro varia de 10 a 100 micras.
En su interior estas células contienen unas estructuras también alargadas y cilíndricas de 1 a 2 micras de diámetro denominadas miofibrinas que desempeñan un papel decisivo en el proceso de la contracción muscular.
Cada fibra muscular esta en contacto con una determinación nerviosa por donde le llega el estimulo para que se produzca la contracción adecuada. Esta contracción es rápida, energética y sujeta a control voluntario.
La mayor parte de la masa del corazón esta formada por tejido muscular. Las células son alargadas, de 15 micras de diámetro y uno a dos núcleos. Existe, además, una red de células, también musculares pero modificadas dentro del propio miocardio que generan y conducen estímulos al resto de células cuyo resultado son los latidos cardiacos. Las células musculares cardiacas se autoestimulan y funcionan como una sola célula. La contracción cardiaca es involuntaria.
El tercer tipo es el músculo liso, con células fusiformes de 80 a 200 micras de longitud y 5 a 10 micras de diámetro. Se disponen en forma de capas que forman parte de la pared de diversos órganos.
La contracción sucede tras un estimulo hormonal, nervioso o mecánico.
Todo el tejido muscular tiene una capacidad muy limitada de regeneración.
El adipocito
Es la célula dominante en el tejido adiposo y se caracteriza por almacenar grasa en su interior.
Existen dos tipos de tejido adiposo, cada una con sus particulares características.
1. el mas abundante es el denominado grasa blanca. Sus adipositos son de gran tamaño, puesto que alcanza hasta 100 micras de diámetro, tienen forma esférica cuando están aislados y poliédrica cuando se apiña en el tejido adiposo.
Las células adiposas no se dividen y los nuevos elementos se originan a partir de células precursoras. El color del tejido varia dependiendo de la dieta, entre blanco y amarillento. Cada célula contiene una gran gota lipida o de grasa y, según se puede observar en el microscopio electrónico, se reúnen varias gotitas lipidas mucho mas pequeñas a su alrededor cuyo numero y tamaño cambia en función del estado de actividad sintética de las células.
El tejido adiposo se localiza bajo la piel de casi todas las regiones del cuerpo. La diferente acumulación en determinadas zonas corporales, influenciada por las hormonas sexuales y la cortisona, motivan en gran parte las diferencias que pueden observarse entre el cuerpo de un hombre y el de una mujer.
La edad también es un factor que propicia cambios en la distribución del tejido graso. En realidad, el espesor solo es uniforme en el recién nacido.
Las grasa son muy malas conductoras del calor, lo cual contribuye a que el tejido adiposo haga las veces de aislamiento térmico y se constituye en el elemento de la conservación del calor corporal.
El almacenamiento de grasas procedentes de la alimentación en los adipositos, supone un almacenamiento de energía de primera magnitud que puede ser usado en periodos de alimentación deficiente.
2. el otro tipo de tejido adiposo es el multilocular, porque sus adipositos contienen muchas gotas de grasa. Sus células son mas pequeña, de forma poligonal y se agrupan alrededor de los vasos sanguíneos. Tienen una distribución muy limitada y su cantidad solo es significativa en el recién nacido, que es el periodo de la vida donde ejerce, primordialmente, su función al suministrar calor y, con ello, protección contra el frío.
El óvulo
El óvulo es la célula germinal del sexo femenino. De forma parecida a lo que ocurre con el espermatozoide, el óvulo maduro es el resultado final de las transformaciones que sufre una célula original u ovocito. En el ovario, los ovocitos se hallan dentro de pequeños cuerpos esféricos llamados folículos ováricos.
Una niña recién nacida tiene unos 400 mil folículos, la mayoría de los cuales van degenerando durante la vida hasta desaparecer en la menopausia. Durante el periodo reproductivo de la mujer, unos 450 de estos folículos maduran y liberan el ovocito que alberga en su interior para que pueda ser, eventualmente, fecundado.
Antes de la pubertad, los folículos están en la primera fase del proceso madurativo y se les llama folículos primarios. El ovocito que contienen es una célula voluminosa de unas 40 micras de diámetro.
Desde la pubertad, algunos folículos crecen y el ovocito alcanza 40 micras. De varios folículos que en cada ciclo menstrual inician la transformación, solo uno llega a la maduración completa.
El folículo maduro adopta la forma de una vesícula que forma protuberancias en la superficie del ovario con un tamaño que puede alcanzar 1 centímetro de diámetro. En esta etapa se acumula liquido en su interior hasta que la desmesurada presión rompe la estructura esférica folicular y se libera el ovocito: es el momento de la ovulación, es decir aproximadamente el catorceavo día del periodo menstrual.
Tras abandonar el ovario, el ovocito es recogido, a modo de embudo, por la trompa uterina o trompa de Falopio, de donde parte al posible encuentro con el espermatozoide.
El ovocito debe ser fecundado poco después de la ovulación, es decir antes de 24 horas, porque de no ser así, degenera, se fragmenta y desaparece.
El óvulo es casi doscientas cincuenta mil veces mayor que el espermatozoide y alcanza su completa madurez solo después de la fecundación.
Los 23 cromosomas que aporta el espermatozoide se junta con los otro 23 del óvulo y se conforma la confrontación cromosomica normal, es decir 46 cromosomas, en 23 parejas. La fecundación tiene lugar en el tercio externo de la trompa uterina y el elemento resultante, o huevo, empieza a dividirse a medida que se desplaza hacia el útero, donde se implantara el noveno día de la fertilización. El embrión quedara sumergido dentro de la pared uterina, de la que se nutrirá y recibirá protección hasta el fin del embarazo.
El linfocito
El linfocito es un tipo de glóbulo blanco que se encuentra en la sangre, la medula ósea y los órganos linfoides. El núcleo es voluminoso en relación con las dimensiones de la célula.
Según el tamaño se pueden distinguir linfocitos pequeños, que son los predominantes en la sangre, y linfocitos grandes.
La cantidad en sangre es de unos 2500 milímetros cúbicos, lo que corresponde aproximadamente a un 25-30% respecto al numero total de glóbulos blancos. La duración de los linfocitos es extremadamente variable :pueden oscilar desde unos días hasta varios meses o años. La tesa de renovación, no obstante, es muy elevada y se estima que diariamente se producen unos 10 millones de linfocitos en lugares como la medula ósea y que cada día se renueva el 2% de los linfocitos.
Los linfocitos constituyen una población celular heterogénea y existen dos clases perfectamente diferenciadas: linfocitos T y linfocitos B. Los primeros son los mas abundantes y alcanzan el 80% del total, frente al 20% de los linfocitos B. Tienen una función distinta. Mientras los linfocitos T intervienen en la inmunidad celular, los B son mas responsables de la inmunidad humoral.
Cuando algún elemento extraño penetra o se pone en contacto con los organismo se produce una respuesta inmediata por parte de la inmunidad, tanto celular como humoral, para garantizar un dispositivo defensivo ante la posible agresión externa.
Por parte de los linfocitos T, la respuesta se produce mediante cierta toxicidad directa sobre los agentes extraños.
En los trasplantes de órganos, los linfocitos T son también los responsables fundamentales del proceso de rechazo.
Por su parte, los linfocitos B, que casi siempre requieren de la cooperación de los linfocitos T para activase, producen los correspondientes anticuerpos para eliminar al elemento extraño o neutralizar su acción nociva.
Las plaquetas
Las plaquetas, también llamadas con el nombre de trombocitos, son corpúsculos sin núcleo presentes en la sangre. Tienen forma de disco biconvexo y su tamaño oscila entre 2 y 4 micras. Se originan como fragmentos de una célula de mayor tamaño que esta en la médula ósea y se llama megacariocito.
El numero de plaquetas en la sangre es difícil de determinar puesto que tienen tendencia a formar conglomerados. No obstante, la cifra que puede considerarse dentro de la normalidad oscila entre 150000 y 300000 plaquetas por milímetro cúbico de sangre. Las plaquetas permanecen en la sangre durante 8-12 días y después son destruidas por el bazo.
Las plaquetas, que son los elementos formadores de la sangre de menor tamaño, aparecen en grupos y adquieren una coloración azulada cuando se observa en el microscopio. En su interior, aparece una especie de gránulos que contienen diversas sustancias cuya actividad es necesaria para el buen funcionamiento de la coagulación sanguínea.
Disponen, asimismo, de una capa exterior responsable de que puedan agregarse entre ellas y adherirse a la pared de los vasos sanguíneos. Su función principal consiste en intervenir en el proceso fisiológico de la hemostasia, es decir, el proceso por el cual se mantiene la integridad de los vasos sanguíneos después de sufrir una lesión.
Las plaquetas son los primeros elementos que acuden al lugar lesionado para impedir que la sangre salga del árbol vascular.
Una vez allí, se adhieren y se acumulan formando un tapón que cierra la superficie rota del vaso sanguíneo.
Además, liberan sustancias como la adrenalina y la serotonina que producen una vasoconstricción y, por tanto, una oclusión del vaso, todo siempre con la finalidad de obstaculizar y frenar el escape de sangre al exterior.
Las plaquetas intervienen en el mecanismo de la coagulación al proporcionar diversas sustancias que participan en la formación del coagulo de sangre que, dispuesto sobre el tapón de plaquetas, consolidan la etapa final del mecanismo por el cual el organismo se protege de una eventual hemorragia.
La sangre sin plaquetas puede, no obstante, coagular pero lo hace mucho mas lentamente.
Célula madre
La sangre humana consta de un gran muestrario celular en el que cada una de las células esta diseñada con minuciosa precisión para cumplir una función concreta y, en muchas ocasiones, vital:
-los glóbulos rojos transportan oxigeno a los distintos tejidos.
-las plaquetas evitan la hemorragia.
-los glóbulos blancos forman el sistema inmunológico que defiende al organismo de las agresiones de agentes extraños.
Lo mas sorprendente es que esta diversidad celular procede de una sola clase de célula que reside en la médula ósea: la llamada célula madre.
Esta célula tiene la capacidad de autorreplicarse repetidamente, a la vez que puede también diferenciarse en las distintas líneas celulares especificas que origina.
La célula madre ya aparece en el embrión humano y emigra hasta el hígado en la época fetal. Las células de la sangre se originan, en el hígado. Después del nacimiento, la sangre únicamente se produce en la medula ósea.
Las células que derivan de la célula madre pueden replicarse y diferenciarse a un ritmo realmente sorprendente. En general, una persona produce cada hora de 3000 a 10000 millones de plaquetas, glóbulos rojos y glóbulos blancos.
Cada día, un adulto normal llega a producir unos 3 billones de glóbulos rojos, 2.5 billones de plaquetas y 1.5 billones de glóbulos blancos por kilo de peso.
Estas cifras se ajustan a las necesidades del individuo en cada momento. Pueden ser prácticamente nula o incrementarse hasta diez veces.
Otra característica adicional de la célula madre es la dificultad de aislarla. De hecho, solo se tienen pruebas indirectas de existencia. Mediante la utilización de técnicas complejas de laboratorio, se ha podido determinar que un 0.1% a un 0.2% de las células presentes en la médula ósea pueden constituir el conjunto de las células madres ya que tienen las particularidades biológicas que las caracterizan.
Su aislamiento y su posterior manipulación pueden constituir un avance de primera magnitud en el conocimiento y tratamiento de los canceres de la sangre. Si la célula madre esta alterada y origina la proliferación de las células cancerosas, puede intentarse su destrucción y posteriormente sustituirse por otras células madre normales procedentes de un transplante de médula ósea.
El mastocito
El masteocito, también llamado célula cebada, es uno de los elementos celulares del tejido conjuntivo. Se halla distribuido ampliamente por todo el cuerpo, pero especialmente por zonas donde se puede establecer una relación con el exterior: aparato respiratorio, tubo digestivo y piel.
Su numero es variable pero en las localidades mencionadas puede alcanzar una cifra cercana a los 20000/milímetros cúbicos. Las áreas que rodean a los vasos sanguíneos son los lugares donde preferentemente se observan.
El masteocito tiene forma globulosa, sin prolongaciones, con núcleo esférico, pequeño, casi siempre central y que, en la mayoría de ocasiones, no es visible al estar tapado por los elementos mas característicos de la célula, que son los gránulos.
El masteocito fue descubierto hace 100 años por Ehrlich gracias a la especial particularidad de coloración de los gránulos, consiste en la metacromasia, es decir la capacidad para cambiar el color de la tinción utilizada para su detención.
Los gránulos contienen en su interior diversas sustancias sintetizadas por la propia célula cebada. Las más conocidas son la heparina y la histamina. La primera tiene un efecto anticoagulante, pero su papel en los tejidos normales no ha podido determinarse con precisión. Respecto a la histamina, se sabe que es capaz de producir una constricción de los bronquios y dilatar los capilares sanguíneos, aumentando su permeabilidad.
El masteocito, y fundamentalmente sus gránulos, tiene un marcado protagonismo en las reacciones alérgicas a medicamentos, en los ataques de asma y en la aparición de urticaria.
El contacto con un estimulo o anfígeno, como por ejemplo la penicilina o el polen, induce la secreción y liberación de sustancias contenidas en los gránulos y la aparición de sus efectos sobre los distintos tejidos.
No se ha demostrado su presencia en el torrente circulatorio pero, casi con toda seguridad, tiene el mismo origen que las células de la sangre. En realidad, es prácticamente igual aun tipo celular de la misma llamado basófilo.
La vida del mastocito es relativamente larga y se estima que si no hay estímulos fisiológicos o patológicos que lo activen puede durar hasta dos años.
El osteocito
El osteocito es una célula localizada en el interior de la matriz de los huesos. Se sitúa de unas lagunas. Es aplanado, en forma de almendra, y dispone de unas prolongaciones que se introducen en los cencliculos del hueso, para comunicarse entre si.
Los osteocitos son esenciales para la nutrición de la matriz miralizada. De manera que su muerte es enseguida de la consiguiente reabsorción de la matriz.
El osteocito tiene su precursor en el osteoblasto, que es la parte orgánica de la matriz o sea sobre la cual se depositan las sustancias minerales que dan la textura rígida habitual del tejido ósea.
Los osteocitos y los osteoblastos parecen ser distintas etapas de un mismo tipo celular. El osteoblasto también posee prolongaciones. Cuando esta envuelto por la matriz recién sintetizada, pasa a ser osteocito.
Con el deposito de la matriz alrededor del cuerpo de la célula y de sus prolongaciones, se moldean y, en definitiva, se forman lo que son las lagunas y los canalícelos que tienen aproximado al osteocito. Tanto el osteocito como el osteoblasto pueden almacenar calcio en su interior.
Los huesos, a diferencia de los que pudiera pensarse dan su imagen del tejido inerte, experimentan continuamente importantes transformaciones. En ellos intervienen los osteoblastos y el tercer componente de los huesos: los osteoblastos.
Con la acción de los osteoblastos, se produce una reabsorción del tejido óseo y, tras una etapa de reposo, los osteoblastos se encargan de rellenar la zona excavada por los osteoblastos. Al final se recupera el equilibrio.
La máxima masa ósea se alcanza entre los 20-40 años. A partir de esta edad, y progresivamente se va perdiendo hueso a razón de 1% del esqueleto al año.
En la mujer, después de la menopausia, la perdida es mayor hasta llegar a 3% anual. En edad octogonaria, la disminución total de masa ósea respecto a la juventud es de casi un 30%.

REINO ANIMALIA


EJEMPLO DEL REINO ANIMALIA


Reino Animal es la designación por la que se conoce en el Budismo al tipo de existencia que tienen algunos animales y se trata de uno de los Seis Reinos de Existencia por los cuales deambula la conciencia, un nacimiento tras otro, en el ciclo conocido como Samsara.

Lo primero que resulta necesario aclarar es que el lenguaje científico y la terminología budista difieren, ya que, por ejemplo, el ser humano es considerado un animal usando la primera acepción pero no la segunda.

De acuerdo al Budismo, los animales generalmente contemplados para este reino son todos los seres vivos visibles pertenecientes a especies dotadas filogenéticamente de la capacidad de desplazamiento. Esto ciertamente incluye a la totalidad de los vertebrados y buena parte de los invertebrados, incluyendo a los insectos. Esta concepción implica que causar daño o muerte a este tipo de seres es considerado por el Budismo como algo negativo en un sentido kármico, especialmente si es hecho a propósito o con premeditación.

Por lo general, los seres vivos no dotados de locomoción, tales como los vegetales, no son incluidos en esta categoría por los Budistas. En consecuencia los Budista no suelen considerar que causar daño o muerte a un vegetal sea algo negativo en un sentido kármico. De esta creencia proviene la predilección Budista por la dieta vegetariana, aunque no todas las escuelas o linajes son igualmente estrictas en este sentido.

De igual forma, seres vivos no visibles sin medios artificales, tales como los microorganismos, tampoco son considerados animales y, por lo mismo, su alteración o eliminación no es considerado algo negativo en un sentido kármico. Por este motivo, los Budistas no ven problemas éticos en el empleo de antibióticos.

En el Budismo Mahāyāna, vertiente en la que se hace hincapié en que las enseñanzas deben ser demostrables, últimamente se ha despertado un notable interés por compatibilizar esta concepción con los descubrimientos científicos contemporáneos, razón por la cual maestros Budistas tan respetados como el XIV Dalai Lama se han mostrado muy curiosos acerca de lo que la ciencia pueda aportar para dilucidar si un ser vivo está dotado o no de conciencia, tal como la entiende el budismo.

REINO PLANTAE



EJEMPLO DEL REINO PLANTAE



Plantas verdaderas o embriófitos (Reino Plantae): son organismos multicelulares, autotróficos; tienen células con paredes de celulosa; contienen clorofila a y b y carotenoides como pigmentos accesorios; almacenan almidón; tienen un ciclo de vida espórico o diplobióntico, con alternación de generaciones heteromórficas: el gametofito haploide (n) y el esporofito diploide (2n); gametangios rodeados por una capa de células estériles (la
chaqueta estéril) son presentes o ausentes; son ogámicas; tienen espermas móviles o no móviles (las otras células no son móviles); producen un embrión
Existen tantas plantas distintas en todo el mundo, que aunque se reconoce que todas ellas pertenecen al reino plantae (salvo algunas excepciones), los investigadores aún no se ponen del todo de acuerdo de cómo hay que clasificarlas; sin embargo, una clasificación que se utiliza actualmente es la que realizó Cronquist en 1969.
El reino plantae se puede agrupar en 4 grandes grupos que podemos separar en varias divisiones:
• Briofitas.
• Pteridofitas.
• Gimnospermas.
• Angiospermas.
DIVISIÓN BRIÓFITA
En esta división se agrupan los llamados briófitos, estos son las hepáticas, los musgos y las antocerotas. Son plantas de pequeño tamaño que han colonizado el medio terrestre, aunque abundan principalmente en lugares de elevada humedad, puesto que necesitan del agua para llevar a cabo su ciclo reproductor.
Otra característica de los briófitos es que presentan una alternancia de generaciones heteromórfica, en la cual el gametófito es haploide y es la generación dominante frente al esporófito que es diploide y se desarrolla sobre el gametófito.
Según la morfología del gametófito encontramos dos tipos de briófitos:
Los briófitos talosos son las antocerotas y algunas hepáticas, su gametófito es un talo aplanado que se fija al sustrato por unos rizoides (pequeños filamento que no tienen poder absorbente).
Los briófitos foliosos son los musgos y la mayor parte de las hepáticas, estos gametófitos poseen un caulidio (eje) fijado también por rizoides al sustrato, además a lo largo del caulidio poseen unas pequeñas hojas o filidios.
Otra característica de los briófitos es que no tienen un tejido conductor como puede ser el xilema o el floema de las plantas vasculares, algunos no tienen células conductoras y usan toda su superficie para absorber agua y nutrientes, y otras tienen unas células conductoras más especificas.
Como hemos indicado hay tres grupos de briófitos que adquieren el nivel de clase:
1. Las hepáticas constituyen un grupo de plantas primitivo estrechamente emparentado con los musgos. Al igual que éstos, carecen de tejidos vasculares y de verdaderas raíces de manera que absorben el agua por toda la superficie de la planta. Por ello, suelen desarrollarse en ambientes húmedos.
2. Clase Marchantiopsida (hepáticas)
Es decir, todos los musgos. Son tan chiquitos que de lejos solamente verás una alfombra parejita de color verde que cuando te acerques mucho verás los filidios; y si la buscasen época de lluvias y tienes mucha suerte, verás un palito que sale del centro de los filidios con una bolita en la punta (esporofito); esa es su parte reproductora.
3. Clase Bryopsida (musgos)
4. Clase Anthocerotopsida (antocerotas)
Una sola familia, Anthocerotaceae, con 5 géneros, tres del hemisferio norte, Anthoceros, Phaeoceros y Notothylas y dos tropicales, Dendroceros y Megaceros.
DIVISIÓN PTERIDÓFITA
En este grupo taxonómico se engloban todas las criptógamas vasculares, es decir, los helechos y otras plantas afines. El ciclo biológico sexual se caracteriza por tener una alternancia de generaciones con dominancia del esporófito sobre el gametófito.
El esporófito se encuentra vascularizado, puesto que se encuentra provisto de xilema, floema y otros elementos necesarios para el transporte de agua y de otras sustancias a lo largo de la planta. En el esporófito podemos diferenciar la raíz (en los helechos más evolucionados), un tallo que se encuentra más o menos desarrollado pero generalmente reducido a un rizoma subterráneo, y unas hojas o frondes que tienen diferentes tamaños según la especie.
En el enves de los frondes o en su borde se disponen los esporangios formadores de esporas, en ocasiones en una misma planta aparecen dos tipos de hojas: trofófilas que son estériles y se utilizan para captar energía y realizar la fotosíntesis; y hojas esporófilas que son fértiles y portan los esporangios.
Los esporangios normalmente se encuentran agrupados en soros que pueden estar desnudos o protegidos por unas formaciones membranosas o indusios formados a partir de las hojas. En el interior de los esporangios se encuentran las esporas que son liberadas al exterior para su germinación, de producirse este hecho se forma un gametófito muy reducido llamado protalo, el cual suele ser una lámina de menos de 2 centímetros pegada al sustrato mediante rizoides.
En los gametófitos se hallan tanto arquegonios como anteridios que contienen a la osfera y anterozoides respectivamente. La fecundación debe de darse en presencia de agua o en una época lluviosa puesto que los anterozoides, que son flagelados, llegan nadando hasta el arquegonio para fusionarse con la osfera. En este momento se produce un zigoto diploide que dará origen a un nuevo esporófito.
Dentro de esta división aparecen 4 subdivisiones:
• Subdivisión Lycophytina
• Subdivisión Equisetophytina
• Subdivisión Psilophytina
• Subdivisión Filicophytina
1. Subdivisión Lycophytina
Las licofitinas es un grupo de pteridófitos que han tenido su máximo esplendor durante el Carbonífero, pero que en la actualidad quedan un menor número de especies vivientes.
Entre sus características tienen un tallo variable según la especie, y poseen una ramificación (del tallo y raíces) que puede ser dicotómica o monopódica. En los grupos actuales las hojas son microfilas y su disposición es variable; verticiliadas, opuestas o helicoidales. Hay especies isospóricas o heterospóricas, y los gametofitos son también monoicos o dioicos.
En este grupo encontramos dos clases:
• La Clase Lycopodiopsida, comprende a los helecho isospóreos, cuenta con un único orden, los Lycopodiales.
• La Clase Isoetopsida, comprende a los heterospóreos, y tiene dos ordenes, los Selaginellales y los Isoetales.
- Orden Lycopodiales
Este orden es un grupo isospóreo con un aparato vegetativo de reducido tamaño, tiene ramificación dicotómica o falsamente monopódica. Tiene hojas de pequeño tamaño uninervias y generalmente con disposición helicoidal. En ocasiones los esporófilos se diferencian de los trofófilos, en otras no.
Hay más de cien especies conocidas que se reparten por el mundo entero, algunas son rastreras, otras verticiliadas.
- Orden Selaginellales
Este orden contiene una sola familia la Selaginellaceae, con un único genero viviente, Selaginella. Este género es uno de los que tienen mayor número de representantes con casi 700 especies distribuidas por todo el mundo, principalmente en zonas tropicales y subtropicales.
Presentan un aparato vegetativo de pequeño tamaño, tallos muy delgados, rastreros o erguidos. Las hojas son pequeñas y uninervias, con un ensanchamiento en la base y puntiagudas en su ápice, se disponen por pares en una ramificación dicotómica simpódica en la cual una rama se desarrolla más y parece continuar un eje principal.
Presenta dos tipos de esporangios; macrosporangios y microsporangios, que contienen respectivamente macrósporas y micrósporas. Los esporófilos forman espigas terminales, los macrosporangios se sitúan en la parte superior de la espiga y los microsporangios en la inferior; en estos sitios las esporas germinan dando lugar a células fértiles, y después la fecundación y el desarrollo del embrión se producen en dentro de las macrósporas.
- Orden Isoetales
Este orden además de contar con diversas especies fósiles, cuenta con unas 150 especies que se distribuyen por todo el mundo colonizando habitualmente los ecosistemas acuáticos. Los esporofitos no alcanzan el medio metro de altura, y son herbáceos y perennes. Presentan tallos subterráneos con forma de bulbo del que salen raíces sencillas o con ramificación dicotómica. Todas las hojas se pueden transformar en esporofilos, habiendo una diferenciación entre las hojas exteriores que forman macrosporangios y las interiores con microsporangios.
1. Los equisetos constituyeron parte de las grandes masas de vegetación del Paleozoico, pero han ido teniendo una regresión hasta la actualidad que sólo se conserva un género Equisetum, con unas 25 especies. Los equisetos también se denominan colas de caballo, son plantas herbáceas y perennes. Poseen tallos aéreos cilíndricos, son delgados y huecos en su interior a excepción de en los nudos que hay un tabique interno. Los entrenudos están terminados por una corona de hojitas rudimentarias y sin clorofila, en cada axila nace una yema de la que brotan ramas laterales formando un verticilo de ramas que le dan ese aspecto tan característico.
2. Subdivisión Equisetophytina
Esta subdivisión es un grupo de helechos de características primitivas. Cuenta con únicamente dos géneros vivientes, Psilotum y Tmesipteris.
Estos dos géneros son pequeñas plantas herbáceas perennes, tienen tallos aéreos con una ramificación dicotómica y sin apéndices o con hojas escamosas muy pequeñas. Forman isosporas que al germinar originan protalos subterráneos de pequeño tamaño.
3. Subdivisión Psilophytina
4. Subdivisión Filicophytina
En este grupo se encuentran los denominados helechos verdaderos, puesto que son el grupo de pteridofitos más evolucionado y numeroso.
Presentan un esporofito que claramente se diferencia en raíz, tallo y hojas. Los tallos son generalmente subterráneos, que crecen de forma paralela a la superficie del sustrato, estos tallos se denominan rizomas, son de diferentes morfología según la especie, y de ellos parten numerosas raíces adventicias.
Normalmente los frondes (hojas) son de un tamaño bastante considerable, en su fase de desarrollo se encuentran enrollados sobre si mismos, generalmente los frondes son trofosporofilos, realizan la fotosíntesis y además producen esporas. Los frondes están formados por un peciolo y una lamina, la cual generalmente esta pinada bien una o más veces. Los esporangios de los helechos pueden aparecer aislados en los esporófilos, aunque frecuentemente se encuentran asociados formando unas estructuras denominadas soros y que pueden estar recubiertas por un indusio.
Dentro de las filicofitinas encontramos tres clases:
1. Este grupo esta extinguido y solo se conoce por su registro fósil, se conocen como los helechos con semilla. Vivieron desde el Devónico superior hasta el Cretácico. Tenían unas hojas pinnadas, similares a los helechos, sobre las cuales se encuentran semillas en estructuras con forma de cúpula. Toda esta clase tiene diferente especies que se agrupan en siete ordenes: Lyginopteridales, Medullosales, Callistophytales, Corystospermales, Peltaspermales, Caytoniales y Glossopteridales.
2. Clase Ophioglossopsida
En esta clase se incluyen aquellos helechos de pequeño tamaño con un esporofito que no supera los 50 cm. Tienen un rizoma subterráneo corto y grueso. Las frondes aparecen en un número escaso y generalmente solitarias. Los esporangios son de forma esférica y se disponen en espigas.
Dentro de esta clase se incluye únicamente un solo orden, Ophioglossales.
3. Clase Marattiopsida
4. Clase Filicopsida
Es el grupo de pteridófitos vivientes más grande con unas 10.000 especies. Tienen un tamaño muy variable, llegando a haber ejemplares arborescentes, la mayoría de ellos son terrestres aunque hay algunos que son acuáticos y flotantes.
La variedad de este grupo se demuestra en que las 10.000 especies que lo componen se clasifican en 19 órdenes, 51 familias y 400 géneros.
DIVISIÓN PINÓFITA
Las gimnospermas son las plantas que poseen semilla (espermatófitos) y esta, en su madurez no se encuentra encerrada en un fruto, por esta característica recibe su nombre de gimnosperma: "gymnos" = desnudo y "sperma"= semilla.
Como hemos dicho los representantes de este grupo se caracterizan por tener primordios seminales desnudos. Son plantas leñosas, arbustos o árboles, con hojas casi siempre perennes. Las hojas son de forma muy variable y generalmente no poseen pecíolo o es muy corto, suele ser enteras, sin divisiones.
Las flores son unisexuales y desnudas puesto que no tienen ni cáliz ni corola, algunas veces se encuentran en su base protegida bracteas, hojitas pequeñas modificadas. Las flores masculinas poseen unas escamas en las que se diferencian los sacos polinicos, estas se insertan en un eje corto formando unos conos, en los sacos polínicos se produce una meiosis que originara al grano de polen. Las flores femeninas se agrupan en un eje en forma de cono (piña), cada flor tiene una bractea protectora, y en ella una escama fértil que poseen los primordios seminales, óvulos, en estos se producen los arquegonios que a su vez darán origen a la ovocélula. El grano de polen fecundará a la ovocélula dando lugar a la semilla.
Las gimnospermas aparecieron en el Paleozoico y alcanzaron su máximo esplendor en el Mesozoico, en la actualidad apenas reúna unas 850 especies vivas agrupadas en unos 66 géneros.
Las clases en las que se divide este grupo son:
1. Esta clase es un grupo fósil del cual, probablemente, han derivado las demás gimnospermas. Este grupo se ha conocido por restos fósiles que procedían del Devónico, se ha descubierto que estos árboles llegaron a alcanzar los 10 metros de altura, con un tronco recto y grueso de hasta 1,5 metros de diámetro. Los ejemplares de esta clase se agrupan en dos órdenes: Aneurophytales y Archaeopteridales.
2. Clase Progymnospermopsida (+)
Este grupo esta extinguido y solo se conoce por su registro fósil, se conocen como los helechos con semilla. Vivieron desde el Devónico superior hasta el Cretácico. Tenían unas hojas pinnadas, similares a los helechos, sobre las cuales se encuentran semillas en estructuras con forma de cúpula. Toda esta clase tiene diferente especies que se agrupan en siete ordenes: Lyginopteridales, Medullosales, Callistophytales, Corystospermales, Peltaspermales, Caytoniales y Glossopteridales.
3. Clase Pteridospermopsida (+)
Este grupo alcanzó gran importancia durante el Mesozoico y se extinguió a finales del Cretácico. Poseen un crecimiento secundario en grosor en sus tallos, tienen hojas normalmente pinnadas, y sus primordios seminales se insertan en un receptáculo desnudo y separados entre sí por escamas interseminales. Esta clase presenta a tres grupos con la categoría de orden: Cycadeoidales, Williamsoniales y Pentoxylales.
4. Clase Cycadeidopsida (+)
Los miembros de este grupo alcanzaron su máximo desarrollo durante el Mesozoico, y en la actualidad apenas han sobrevivido unas 160 especies, que se encuentran generalmente en zonas intertropicales.
Dentro de esta clase existe únicamente el orden Cycadales. Las cícadas tienen un aspecto parecido a las palmeras o a helechos arborescentes, tienen tallos simples con poco crecimiento secundario en grosor, tienen raíces bien desarrolladas y algunas de ellas tienden a salir a la superficie. Presentan hojas pinnadas que forman una roseta en el extremo del tallo, cada año se forma un nuevo verticilo de hojas y las más viejas se desprenden dejando cicatrices a lo largo del tallo.
Son plantas dioicas que presentan estructuras sexuales tipo estróbilo en posición, generalmente, terminal.
5. Clase Cycadopsida
Esta clase alcanzó su apogeo durante el Mesozoico y en la actualidad solo queda una especie viviente el Ginko biloba, sus tallos son parecidos a las coniferópsidos, y se diferencian principalmente en que tienen unas hojas muy características con ramificación dicotómica.
6. Clase Ginkgopsida
Las Gnetópsidas forman el grupo con los caracteres más evolucionados de todas las gimnospermas, se distinguen de las otras gimnospermas en que poseen vasos conductores en el leño secundario y además carecen de canales resiníferos, presentan hojas opuestas o verticiladas.
En la actualidad esta clase cuenta con tres ordenes, y en cada uno de esto encontramos a una única familia con un único género:
En el orden Ephedrales,contamos con el género Ephedra el cual cuenta con 40 especies representadas en las zonas templadas de ambos hemisferios, son arbustos muy ramificados con tallos provistos de nudos, las hojas son caedizas o muy reducidas y por ello la fotosíntesis se reduce casi exclusivamente a los tallos.
En el orden Gnetales encontramos al género Gnetum que cuenta con unas 40 especies tropicales, son árboles y arbustos, pero sobre todo lianas. Tienen hojas muy similares a las dicotiledoneas con un peciolo y un limbo elíptico, cuentan con un nervio principal del que parten nervios secundarios.
En el orden Welwitschiales está el género Welwitschia. En este orden encontramos únicamente a una sola especie, Welwitschia mirabilis, vive en las regiones costeras desérticas del sudoeste de Africa, presenta un tallo corto, grueso, y medioenterrado; tiene una raíz larga y ramificada, las hojas se encuentran en el borde del tallo, únicamente dos hojas que son de crecimiento continuo.
7. Clase Gnetopsida
8. Clase Coniferopsida
Esta clase apareció a finales del Paleozoico y alcanzaron su máximo esplendor durante el Mesozoico, en la actualidad han perdido bastantes representantes desapareciendo dos de los cuatro órdenes que engloba y permaneciendo otros dos:
- Orden Cordaitales (+)
Este orden es un grupo extinguido de árboles y arbustos que vivieron desde el Carbonífero al Pérmico, entre ellos se encuentran árboles de troncos de más de 30 metros de altura y hasta un metro de grosor, tiene grandes hojas (de hasta un metro) dispuestas en espiral y con nervios paralelos con ramificación dicotómica.
- Orden Voltziales (+)
Este es un grupo extinguido que permaneció en la Tierra desde el Carbonífero al Jurásico.
- Orden Taxales
Este orden cuenta con unas 20 especies que pertenecen a una sola familia Taxaceae. Son árboles y arbustos dioicos que se encuentran generalmente en el hemisferio norte, tienen troncos de gran grosor y ramas horizontales que presentan hojas, aciculares o lineares, aplanadas y dispuestas en espiral.
Los órganos sexuales masculinos se agrupan en estróbilos, mientras que los primordios seminales se encuentran esparcidos solitariamente en el extremo de las ramas o en la axila de las hojas.
- Orden Coniferales
Este orden representa al grupo más numeroso de gimnospermas contando con unas 575 especies que se dividen en seis familias, encontramos arbustos pero sobre todo especies arbóreas que alcanzan gran altura y edades muy longevas. Encontramos ramificación monopódica con copas de los árboles de forma piramidal. Las hojas son generalmente persistentes, y con una variedad morfológica pero generalmente de superficie reducida.
Como hemos indicado en este orden encontramos 6 familias:
Familia Pinaceae
Esta familia cuenta con unas 200 especies repartidas en 9 géneros, son árboles monoicos con hojas en forma de acícula que se sitúan en braquiblastos o macroblastos.
Los estrobilos masculinos presentan dos sacos polínicos en el inferior de cada microsporófilo, tienen granos de polen que pueden ser transportados por el aire para llegar a los primordios seminales que se encuentran situados en escamas seminíferas que se agrupan de manera helicoidal, como las piñas de los pinos.
Entre las especies de esta familia cabe destacar la importancia forestal de muchas de ellas como pueden ser el género Pinus, y alguna especie del género Abies.
Familia Cupressaceae
Esta familia cuenta con aproximadamente unas 150 especies repartidas en 19 géneros, encontramos especies tanto en el hemisferio sur como en el hemisferio norte. Los representantes de esta familia tienen hojas aciculares o también hojas escuamiformes, que se sitúan opuestas entre sí o formando verticílios de tres.
Los microsporófilos de los estróbilos masculinos poseen 3 o más sacos polínicos, los estróbilos femeninos pueden ser de dos tipos; leñosos tipo arcéstidas, que poseen unas bracteas soldadas que se abren una vez estén maduros; o bien, pueden ser carnosos como las gálbulas.
Familia Cephalotaxaceae
Esta familia cuenta únicamente con un solo género, Cephalotaxus, que tiene 6 especies situadas en el este de Asia. Son árboles o arbustos dioicos con hojas aciculares dispuestas en espiral. Los estróbilos masculinos tienen entre 3 y 8 sacos polínicos en cada microsporófilos, mientras que los estróbilos femeninos poseen dos primordios seminales en cada escama seminífera.
Familia Taxodiaceae
Esta familia está formada por unas 15 especies englobadas en 10 géneros, son árboles monoicos con hojas lineares dispuestas helicoidalmente. En los microsporófilos de los estróbilos masculinos hay de 2 a 9 sacos polínicos. Los estróbilos femeninos son leñosos con bracteas tectrices y seminíferas fusionadas, en las seminíferas encontramos de 2 a 9 primordios seminales.
Familia Araucariaceae
Encontramos dos géneros en esta familia con 36 especies, son árboles tanto monoicos o dioicos que poseen hojas anchas o lineares, opuestas o en espiral. En los microsporofilos encontramos entre 5 y 20 sacos polínicos, los estróbilos femeninos presentan brácteas tectrices y escamas seminíferas con un solo primordio seminal.
Familia Podocarpaceae
Esta familia cuenta con siete géneros y unas 150 especies que se encuentran en el hemisferio austral. Son árboles o arbustos dioicos, tienen hojas escuamiformes dispuestas en espiral, los microsporófilos tienen uno o dos sacos polínicos y los estróbilos femeninos poseen escamas seminíferas que al desarrollarse se hacen carnosas y rodean a las semillas.
DIVISIÓN MAGNOLIOFITA
Las angiospermas son las representantes de esta última división, la más evolucionada. El termino angiosperma se refiere a aquellas plantas que poseen semillas cubiertas, forma el grupo más numeroso con unas 220 000 especies.
Las angiospermas han colonizado todos los hábitats y han desplazado en la mayoría de ellos a las gimnospermas, puesto que presentan características más evolucionadas que permiten una mejor adaptación como pueden ser los sistemas conductores más evolucionados y mecanismos de reproducción mucho más elaborados y eficaces.
La principal característica de las angiospermas se debe a las estructuras que poseen para realizar la reproducción sexual, las flores.
Las flores poseen piezas como los sépalos y pétalos que tienen una función protectora pero sobre todo llaman la atención de los insectos, de los cuales se sirve la planta para realizar el transporte de polen. Los microsporangios y los megasporangios se sitúan respectivamente en estambres y cárpelos. El cárpelo es una hoja transformada con forma similar a una botella, cuenta con una zona ensanchada en la cual se sitúan los óvulos, sobre esta zona se prolonga el estilo (el cuello de la botella) y al final se encuentra una superficie denominada estigma, a este lugar llegan los granos de polen.
En el interior del óvulo una célula madre se divide en otras cuatro, de las cuales sobrevive una que realiza una mitosis y forma el gameto femenino, el saco embrionario. El saco embrionario cuenta con ocho núcleos haploides en siete células puesto que la célula central posee dos núcleos polares, también cabe destacar la presencia de otra célula haploide denominada célula huevo.
Por otro lado el grano de polen está formado por tres células haploides, una de ellas al llegar al estigma forma un tubo polínico que atraviesa el estilo, por este tubo llegan las otras dos células hasta el saco embrionario, una de estas fecunda a la célula huevo y forma la semilla, la otra célula se fecunda con los dos núcleos polares formando una célula triploide donde se desarrolla el endosperma, un tejido nutritivo que al madurar se transformará en el fruto.
En la división Magnoliophyta se encuentran dos grandes grupos con categoría de clase:
1. Las miembros de la clase Magnoliopsida son conocidas como dicotiledóneas, agrupan un número de 170 000 especies de gran importancia tanto ambiental como económica. A este grupo se les denomina así por tener durante las primeras etapas del desarrollo dos cotiledones, se han adaptado a casi todos los medios, y tienen una gran variedad en morfología, tamaño y hábito.
Las características que diferencian a esta clase de la otra gran clase de angiospermas son entre otras la presencia de una raíz primaria persistente, tienen hojas con los nervios ramificados (pinnados), tiene flores con verticilos de 4 o 5 piezas generalmente, en el tallo se produce crecimiento en grosor.
Como hemos indicado hay gran variedad morfológica en esta clase por ello se puede dividir en otras 6 subclases:
Subclase Magnoliidae
Subclase Hamamelidae
Subclase Caryophyllidae
Subclase Dillenidae
Subclase Rosidae
Subclase Asteridae
2. Clase Magnoliopsida (Dicotiledóneas)
3. Clase Liliopsida (Monocotiledóneas)
Los miembros de esta clase son las monocotiledóneas, un grupo que abarca unas 50000 especies, reciben este nombre por poseer únicamente un cotiledón durante su desarrollo. Las características comunes que poseen este grupo y que las diferencian de las dicotiledóneas son la presencia de raíces adventicias que sustituyen a una gran raíz principal; las hojas poseen generalmente una nerviación paralela al nervio principal; encontramos en las flores verticilios de tres piezas o bien múltiplos de tres; y, por último, indicar que los tallos suelen ser herbáceos, flexibles y sin crecimiento en grosor, aunque este se puede dar por otros mecanismos como la superposición de las hojas tal y como se da en las palmeras.
Las monocotiledóneas se dividen en 5 grupos con la categoría de subclase:
Subclase Alismatidae
Subclase Arecidae
Subclase Commelinidae
Subclase Zingiberidae
Subclase Liliidae

REINO FUNGI



En biología, el término Fungi (latín, literalmente "hongos") designa un reino que incluye a los organismos celulares sin cloroplastos y por lo tanto heterótrofos que poseen paredes celulares compuestas por quitina y células con especialización funcional. Actualmente se consideran como un grupo heterogéneo, polifilético, formado por organismos pertenecientes por lo menos a tres líneas evolutivas independientes. La especialidad de la medicina y de la botánica que se ocupa de los hongos se llama micología, donde se emplea el sufijo -mycota para las divisiones y -mycetes para las clases.


Estructura


Los hongos unicelulares, aunque frecuentemente en la misma especie se observan fases de uno y otro tipo. Tienen una membrana plasmática (donde predomina el ergosterol en vez de colesterol), núcleo, cromosomas (los hongos son, por lo general, haploides), y orgánulos intracelulares. Aunque ningún hongo es estrictamente anaeróbico, algunos pueden crecer en condiciones anaeróbicas. La pared celular es rígida, con un componente polisacarídico, hecho de mananos, glucanos y quitina, asociado íntimamente con proteínas.


Los hongos se presentan bajo dos formas principales: hongos filetesmos (antiguamente llamados "mohos") y hongos levaduriformes. El cuerpo de un hongo filamentoso tiene dos porciones, una reproductiva y otra vegetativa.[2] La parte vegetativa, que es haploide y generalmente no presenta coloración, está compuesta por filamentos llamados hifas (usualmente microscópicas); un conjunto de hifas conforma el micelio[3] (usualmente visible). A menudo las hifas están divididas por tabiques llamados septas.


Clasificación clásica de los hongos




Flammulina velutipes



Los grupos de la enumeración anterior hasta Oomycota (incluido) no son verdaderos hongos, sino protistas con distintos parentescos cuyas adaptaciones hicieron confundirlos con hongos.


Clasificación actual del reino de los hongos (2010)






REINO PROTISTA


ejemplo de uno de los principales filos del reino protista:Glaucocystis(Glaucophyta).

El Reino Protista, también llamado Protoctista, es aquel que contiene a todos aquellos organismos eucariontes que no pueden clasificarse dentro de alguno de los otros tres reinos eucarióticos: Fungi (hongos), Animalia (animales en sentido estricto) o Plantae (plantas). En el árbol filogenético de los organismos eucariontes, los protistas forman varios grupos monofiléticos separados, o incluyen miembros que están estrechamente emparentados con alguno de los tres reinos citados. Se les designa con nombres que han perdido valor en la ciencia biológica, pero cuyo uso sería imposible desterrar, como «algas», «protozoos» o «mohos mucosos».


Características:
Hábitat: Ninguno de sus representantes está adaptado plenamente a la existencia en el aire, de modo que los que no son directamente acuáticos, se desarrollan en ambientes terrestres húmedos o en el medio interno de otros organismos.
Organización celular: Eucariotas (células con núcleo), unicelulares o pluricelulares. Los más grandes, algas pardas del género Laminaria, pueden medir decenas de metros, pero predominan las formas microscópicas.
Estructura: Se suele afirmar que no existen tejidos en ningún protista, pero en las algas rojas y en las algas pardas la complejidad alcanza un nivel muy próximo al tisular, incluida la existencia de plasmodesmos (ejemplo: en el alga parda Egregia). Muchos de los protistas pluricelulares cuentan con paredes celulares de variada composición, y los unicelulares autótrofos frecuentemente están cubiertos por una teca, como en caso destacado de las diatomeas, o dotados de escamas o refuerzos. Los unicelulares depredadores (fagótrofos) suelen presentar células desnudas (sin recubrimientos). Las formas unicelulares a menudo están dotadas de movilidad por reptación o, más frecuentemente, por apéndices de los tipos llamados cilios y flagelos.
Nutrición: Autótrofos, por fotosíntesis, o heterótrofos. Muchas formas unicelulares presentan simultáneamente los dos modos de nutrición. Los heterótrofos pueden serlo por ingestión (fagótrofos) o por absorción osmótica (osmótrofos).
Metabolismo del oxígeno: Todos los eucariontes, y por ende los protistas, son de origen aerobios (usan oxígeno para extraer la energía de las sustancias orgánicas), pero algunos son secundariamente anaerobios, tras haberse adaptado a ambientes pobres en esta sustancia.
Reproducción y desarrollo: Puede ser asexual (clonal) o sexual, con gametos, frecuentemente alternando la asexual y la sexual en la misma especie. Las algas pluricelulares presentan a menudo alternancia de generaciones. No existe embrión en ningún caso.
Ecología: Los protistas se cuentan entre los más importantes componentes del plancton (organismos que viven en suspensión en el agua), del bentos (del fondo de ecosistemas acuáticos) y del edafón (de la comunidad que habita los suelos). Hay muchos casos ecológicamente importantes de parasitismo y también de mutualismo, como los de los flagelados que intervienen en la digestión de la madera por los termes o los que habitan en el rumen de las vacas. El simbionte algal de los líquenes es casi siempre un alga verde unicelular.


La clasificaciòn: de los protistas ha variado mucho en los últimos veinte años. Las nuevas técnicas de comparación directa de secuencias de nucleótidos han permitido salvar el problema de la escasez o ambigüedad de los caracteres morfológicos, sobre todo por su pequeño tamaño y organización sencilla. Empiezan a emerger grupos bien definidos, algunos de los cuales se presentan en el cuadro de arriba.
El reino Protista constituye un taxón parafilético puesto que se basa en el caracter plesiomórfico de la unicelularidad y no contiene a todos los descendientes de las especies que abarca. La pluricelularidad se desarrolló independientemente en varios grupos de Eukarya: Animalia, Fungi, Plantae, Heterokontophyta y Rhodophyta. A pesar de que todos estos grupos tienen como origen un protista, sólo los dos últimos se clasifican dentro del reino Protista.
Los protistas han tenido un papel central en el origen y evolución de la célula eucariota. Se han propuesto varias hipótesis considerando la acumulación de datos sobre la naturaleza quimérica del genoma de los eucariontes. La evolución subsecuente es difícil de determinar por las recombinaciones intertaxonómicas primarias, secundarias e incluso terciarias que tuvieron lugar. Sin embargo, comparaciones de múltiples genes y de datos ultraestructurales aclaran en cierta medida tales eventos. Sobre la base de estos datos se han propuesto algunos grupos monofiléticos y una filogenia aproximada de los protistas.[
Árbol de la vida mostrando las relaciones de los seis principales clados de protistas. Se considera que los cloroplastos de Archaeplastida proceden de la endosimbiosis primaria de una cianobacteria, los de Excavata y Rhizaria de la endosimbiosis secundaria de un alga verde y los de Chromalveolata de un alga roja.

Árbol de la vida mostrando la radiación de los protistas.
Uno de los clados, Primoplantae o Archaeplastida, comprende Rhodophyta (algas rojas) y Glaucophyta. Es también el origen de las algas verdes y de las plantas vasculares terrestres que se clasifican en el reino Plantae. Este clado se caracteriza por la presencia de cloroplastos que se considera que fueron obtenidos por la endosimbiosis primaria de una bacteria cianofícea. La mayoría de los miembros de Rhodophyta son pluricelulares.
Otros dos grupos, Chromista y Alveolata (clado Chromalveolata), presentan cloroplastos que se supone han sido adquiridos por endosimbiosis secundaria de un alga roja. El primero comprende Heterokontophyta (algas pardas, diatomeas, oomicetos, etc), junto a los pequeños grupos Haptophyta y Cryptophyta. El segundo comprende Dinoflagellata, Apicomplexa (la mayoría de los antiguos esporozoos) y Ciliophora (ciliados). Algunos miembros han perdido posteriormente los cloroplastos y otros han llegado al nivel de organización pluricelular.
El clado Excavata comprende un gran número de protistas que antiguamente eran clasificados como flagelados. Se caracterizan por la presencia de un surco ventral de alimentación. Algunos miembros son heterótrofos, mientras que otros presentan cloroplastos que se supone son el resultado de la endosimbiosis secundaria de un alga verde. La clasificación de este grupo es difícil y todavía está en sus inicios. Comprende entre otros, Metamonada, Euglenozoa y Percolozoa.
El clado Rhizaria se ha constituido en base a datos moleculares. Comprende algunos ameboides que antiguamente formaban parte del grupo de los rizópodos. En concreto, comprende Radiolaria, Foraminifera y una colección diversa de organismos (entre ellos las amebas filosas con testa, algunos mohos mucosos y algunos flagelados con cloroplastos) que se clasifican en Cercozoa.
El clado Amoebozoa comprende un gran número de protistas ameboides y la mayoría de los mohos mucosos. Sin embargo, otros ameboides que antiguamente formaban parte del grupo de los rizópodos han ido a parar a otros clados. El carácter morfológico de la presencia de seudópodos no es exclusivo de este clado, lo que ha llevado a la confusión de agrupar a protistas no relacionados en las antiguas clasificaciones. Algunos miembros son multinucleados y otros forman agrupaciones que son un modelo para la multicelularidad (Dictyosteliida).
El clado Opisthokonta, constituido en base a estudios moleculares, comprende a una colección diversa de protistas clasificados en Choanozoa. Es también el origen de los reinos pluricelulares de Animalia y Fungi. Estos tres grupos se caracterizan morfológicamente por la presencia en los linajes constituyentes de un flagelo opistoconto (situado en la célula en una posición posterior a la del movimiento).